AREA
Cognitive Neuroscience
SITE
Cell reports
TYPE
Articles
YEAR
Formal publication: May 2023
Authors: Sanz Perl, Y., Pallavicini, C., Piccinini, J., Demertzi, A., Bonhomme, V., Martial, C., Panda, R., Alnagger, N., Annen, J., Gosseries,1O., Ibañez, A., Laufs, H., Sitt, J., Jirsa, V., Kringelbach, M., Laureys, S., Deco, G. and Tagliazucchi, E
Abstract: Brain states are frequently represented using a unidimensional scale measuring the richness of subjective experience (level of consciousness). This description assumes a mapping between the high-dimensional space of whole-brain configurations and the trajectories of brain states associated with changes in consciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data augmentation, and deep learning for dimensionality reduction to determine a mapping representing states of consciousness in a low-dimensional space, where distances parallel similarities between states. An orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordinates represent metrics related to functional modularity and structure-function coupling, increasing alongside loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.
Related Publications
-
The Brain Health Diplomat’s Toolkit: supporting brain health diplomacy leaders in Latin America and the Caribbean
-
Navigating the multiple dimensions of the creativity-mental disorder link: a Convergence Mental Health perspective
-
Global South research is critical for understanding brain health, ageing and dementia
-
The Human Affectome